Data, Tools, and Products to assist in hydropower mitigation

Ryan McManamay

USFS Instream Flow Training

January 10, 2018

Global Hydropower Expansion

Jams under construction
Jams planned

Lallıel aı. 2015 - Aquatic Sciences

US Hydropower Assets

K RIDGE

Near Future of Federal Energy Regulatory Commission (FERC) licensing

- 50% of the FERC hydropower projects with undergo relicensing in the next 15 years
- 70% of the projects will undergo relicensing in the next 20 years
- Doesn't include new licenses

With the looming relicensing storm...

- Need for data, tools, and frameworks to pre-inform stakeholders prior to engagement in FERC licensing process
- Need for early indicators of mitigation needs

Outline

- Steps of FERC licensing
- Present a framework to organize the application of data and tools associated with licensing
- Examples of data, tools and their application
- Brier tour of National Hydropower Asset nhaap Assessment Program

Data and
Tools

- Stream Classification Web Application

FERC Licensing Procedure Types

Licensing Process
Traditional
Licensing Process
(TLP)

Integrated
Licensing Process
(ILP)

Description

Historically, it was the predominant procedure. 3-stage consultation process. Stage 1: NOI, PAD, joint meeting, comments, study proposal disputes. Stage 2: Conduct studies, draft application, stakeholders provide comments/disagreements/resolution. Stage 3: Final application files
Default procedure. Implemented in 2003 to create efficiency in process. Same as TLP except:

- Early issue identification and resolution of studies (fill info gaps), avoiding studies post-filing;
- Integration of other stakeholder permitting needs;
- Established time frames to complete process steps for all stakeholders, including the Commission.
Alternative
Licensing Process
(ALP)

Designed to improve communication and flexibility.

- Tailor the pre-filing consultation process to each case;
- Combine into a single process the pre-filing consultation process and EIS
- Allow for prep of draft EIS by an applicant or contractor

Major Steps in FERC Licensing Process

FERC Licensing Process
Integrated Licensing Process

Major Steps in FERC Licensing Process

FERC Licensing Process
Integrated Licensing Process

Science-Based Process
from Richter et al. 2006

Placing Regulations Into a Meaningful Framework

FERC Licensing Process
Integrated Licensing Process

Organizational Framework

McManamay et al. 2016. Env Manag

Terminology

- Context: provided at basin or regional scales to characterize the biophysical and operational settings around each hydropower project and provides a point of reference to other regulated rivers and reference streams.
- Assessment: conducted at national or regional scales and includes fully describing the current hydrologic and ecologic conditions relative to stakeholder determined ecological and hydrologic objectives.
- Scoping: used to identify key hydrologic and ecological targets, isolate information gaps, and develop flow-ecology relationships to predict the ecological outcomes of alternative flows.
- Prescription: Based upon best available knowledge, prescription presents a series of alternative flow scenarios based on objectives and the knowledge gained within the assessment and scoping stages.
- Feasibility: analyses that determine the ecological versus economic impacts of alternative flows at the site-specific scale.

Organizing when and where tools are applicable

Context

- Provided at basin or regional scales to characterize the biophysical and operational settings around each hydropower project and provides a point of reference to other regulated rivers and reference streams
- This helps to understand the environmental and political setting, as well as the potential opportunities and constraints to environmental mitigation
- Relevant Data
- Project Infrastructure, Reservoirs, Attributes
- Land Ownership
- Project Economics (Generation)
- Mode of operation
- Species occurrences
- Hydrologic gauges, water temperature stations
- Stream typologies
- Environmental mitigation requirements

Supported in NHAAP
Partially supported in NHAAP
In planning
Not supported

- Relevant Tools
- Stream Classification Web Application
- Hydropower Project and Water Resource Mapper
- Historical Generation
- River Function Framework

Context

Assessment

- National or regional scales and includes fully describing the current hydrologic and ecologic conditions relative to stakeholder objectives.
- What is the limiting factor(s) in this system?
- Relevant Data
- Hydrologic Gauges
- Water Temperature Monitoring
- Substrate monitoring
- Hydrologic Alteration Assessment
- Species Occurrences
- Observations and Pictures
- Relevant Tools
- Flow-ecology relationships
- Stream Classification Web Application
- Tennant Method
- IHA and RVA
- 7Q10

\square Supported in NHAAP
\square Partially supported in NHAAP
\square In planning
Not supported

Assessment

General findings from the 30,000' view:

- Complete loss of seasonal profile
- Loss of major timing of peak flows
- Overall loss of flow magnitude, extremely apparent in spring/early summer
- Hells Canyon displays a loss of flow volume and highly modified flow regime and loss of biodiversity and ecosystem services
- Comparison to other sites reveals missing ecologically-relevant flow components

Scoping

- used to identify key hydrologic and ecological targets, isolate information gaps, and develop flow-ecology relationships to predict the ecological outcomes of alternative flows
- What are the knowledge gaps? What studies are needed to fill those gaps?
- Need hard evidence and supporting data
- Relevant Synthesized Data
- Hydrologic Gauges
- Water Temperature Monitoring
- Substrate monitoring
- Hydrologic Alteration Model
- Species Occurrences
- Observations and Pictures
- Relevant Tools
- Flow-ecology relationships
- Stream Classification Web Application
- River Function Framework Checklist

Supported in NHAAP
Partially supported in NHAAP
\square In planning
Not supported

Prescription

- Based upon best available knowledge, prescription presents a series of alternative flow scenarios based on objectives and the knowledge gained within the assessment and scoping stages
- Relevant Field Data
- Field observations
- Cross-sectional profiles
- Biological surveys
- Stage/height information
- Bedload
- Substrate assessment
- Relevant Tools
- IFIM (e.g., PHABSIM)
- Reservoir Operation
- Floodplain Inundation
- HECRAS
- Flushing Flows
- Flow-ecology relationships

Table 1 Examples of alternative flow scenario components to be tested during feasibility studies for stream reaches below hydropower facilities. Alternative scenarios can represent one to many different

Flow scenario component	Description	Potential ecological/societal benefit
Baseflow		
Minimum flow	Constant baseflow supplied year-round between generation	Entire channel perimeter remains inundated and reduces fish stranding following generation. Creates more stable environment
Seasonally variable baseflow	Baseflow magnitude varies according to season	Seasonally fluctuating flow provides enhanced flows during different spawning times for fish and habitat refugia to support varying life stages of macroinvertebrates and riparian vegetation
Flood pulses		
Frequent small flood (rafting release)	Scheduled releases of small flood events periodically during year (5-10 times) during appropriate seasons	Provides channel maintenance such as scouring or flushing sediment, inundating roots, removing encroaching vegetation, and redistributing spawning substrates. Also could provide recreational boating opportunities
Annual large flood (floodplain pulse)	Scheduled large flood event (per 1.5 years)	Creates new habitats by shifting large amounts of substrates, provides organic matter inputs from floodplain, inundates backwater habitats, and provides nursery habitats for fish
Special-events		
Attractant flow	Pulsed flows attract upstream migrating fish to ladders	Enhances fish passage, reproduction, and population viability
Passage flow	Pulsed flows to enhance/protect outmigration	Enhances fish survival, recruitment, and population viability
Subdaily		
Ramping restriction	Restrictions in the rate of change of the rising limb of generation pulse	Creates less disturbance by reducing square-shaped hydrograph. Allows time for behavioral responses to initiation of peak generation
Down-ramping restriction	Restrictions in the rate of change of the falling limb of generation pulse	Prevents fish stranding by providing time for behavioral responses to flow recession
Daily range restriction	Restrictions in range of min/max flows during day	Reduces disturbance and creates more stable environment to enhance feeding and spawning habitats
Diurnal variation in generation	Shifting the timing of generation within a day	Generating during different times of the day may provide more temporal overlapp of hydrologic stability and peak feeding times

Prescription

- Currently, there is 600 different hydrologic statistics that can be calculated (USGS)
- Need to prioritize components of the flow regime to focus mitigation efforts
- Use a decision-tree approach

Flow Component

Feasibility

- analyses that determine the ecological versus economic impacts of alternative flows at the site-specific scale
- Relevant Data
- Project Generation
- Project infrastructure
- Synthesized Field Data
- Observations and Pictures
- Relevant Tools
- IFIM (e.g., PHABSIM)
- Reservoir Operation
- Floodplain Inundation
- HECRAS
- Flushing Flows
- Optimization
- Flow-ecology relationships

Tour of NHAAP Resources

National Hydropower Asset Assessment Program

Home	Publications	Research \& Data >	Geospatial Tools	Working With Us	Contact Us

The Oak Ridge National Laboratory's (ORNL) National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water, and ecosystem research and geospatial data integration effort for efficient, sustainable, and environmentally friendly hydroelectricity generation and water management. The NHAAP is sponsored by the US Department of Energy Office of Energy Efficiency and Renewable Energy's (EERE) Water Power Program and our partners include state and federal agencies, non-governmental organizations, technology and resource developers, utilities, and researchers.

Project Overview

The overarching goal of the NHAAP effort is to provide the Federal database standard for existing and potential hydropower resource evaluation in the US. By offering the most
comprehensive geospatial coverage and unmatched accuracy currently available, the NHAAP effort aims to deliver consistent and reliable information that is critical for stimulating US hydropower market acceleration, deployment, technology-tomarket activities, and environmental impact reduction. Through ongoing development efforts, we aim to increase the quality, functionality, and depth of detail of the NHAAP database and build on our analysis capabilities to enable more effective and efficient support for activities of the US DOE's Water Power Program.

Oak Ridge National Laboratory is managed by UT-Battelle for the US Department of Energy

Home I DOE I ORNL I ORNL Water Power Program | Security and Privacy Notice I Web Site Contact

US Stream Classification System

Stream Classification System

Eastern Stream Classification

US Stream Classification System

Stream Classification

- Identify stream type for hydropower projects, restoration projects, etc
- Identify case studies or reference streams
- Find powerplants or gages on similar stream types
- Assess hydrologic and temperature alteration
- Delineate watersheds

Stream Classification Web Application

Additional Support Slides

Tour of NHAAP Research

National Hydropower Asset Assessment Program

The Oak Ridge National Laboratory's (ORNL) National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water, and ecosystem research and geospatial data integration effort for efficient, sustainable, and environmentally friendly hydroelectricity generation and water management. The NHAAP is sponsored by the US Department of Energy Office of Energy Efficiency and Renewable Energy's (EERE) Water Power Program and our partners include state and federal agencies, non-governmental organizations, technology and resource developers, utilities, and researchers.

Project Overview

NHAAP Public Portal http://nhaap.ornl.gov/

The overarching goal of the NHAAP effort is to provide the Federal database standard for existing and potential hydropower resource evaluation in the US. By offering the most
comprehensive geospatial coverage and unmatched accuracy currently available, the NHAAP effort aims to deliver consistent and reliable information that is critical for stimulating US hydropower market acceleration, deployment, technology-tomarket activities, and environmental impact reduction. Through ongoing development efforts, we aim to increase the quality, functionality, and depth of detail of the NHAAP database and build on our analysis capabilities to enable more effective and efficient support for activities of the US DOE's Water Power Program.

Energy Efficiency \& Renewable Energy
Oak Ridge National Laboratory is managed by UT-Battelle for the US Department of Energy

Home I DOE I ORNL I ORNL Water Power Program I Security and Privacy Notice I Web Site Contact

NHAAP Research \& Data

NHAAP Geospatial Tools

National Hydropower Asset Assessment Program

Home	Publications	Research \& Data	Geospatial Tools >	Vorking With Us	Contact Us

GEOSPATIAL TOOLS
ORNL has created the following tools for users t

ORNL has created the following tools for users

- Locating and exploring existing hydropower plants, dams, generators, and associated project informati
- Viewing hydrologic and environmental characteristics in relation to existing and potential hydropower
- Exploring hydropower generation trends;
- Identifying and exploring potential for hew hydropower development;
- Identifying and removing potential environmental barriers to hydropower development.

Explore Map layers
Stream Classifidation Tool
Uudracic Vimuen
HydroGIS Viewer

Stream Classification Tool

SSIFICATION TOOL
Aclasificotion suten the charaterine and genealine the bipobracal settings of stem emvionments including tydrologicicthermal geomorphological and ecological dmamics

Objectives:
Hophysial setingss detemmise the exeent and nature of hydropower development

Improving the efficency of Envion

scoping for keening/telicerving. - Hoviding high iesolution datrsest so foter finure water poner reseach, - Priorituing coneveration meask
wreas for thure developnem,

Io dare dis profech nas cansined dinost miwion syueam reaches of the fastern

Example: Public Access via HydroGIS

Example: Finding Context for an Exi

ORNL HydroGIS \times eLibrary - Docket Sheet
\leqslant https://hydro.ornl.gov/cgi-bin/ferc/docket.php?id=P-2698
© . https://hydro.ornl.gov/cgi-bin/ferc/docket.php?id=P-2698

Search AdvSearch New Dockets Docket Search Daily Search

Print Version

Federal Energy Regulatory Commission

Docket Sheet

Docket P-2698 (ALL Subdockets)

This is a very large query. The download will take longer than the usual time. Applicant(s)/Docket:Nantahala Power \& Light Company

Sub Docket: 000

Docket Description: There is a problem with archive data and system. Contact Administrator.

Issued By:	ATLANTA REGIONAL OFFICE
Filed Date:	$2 / 25 / 1982$
Accession No: $19820309-0005$ Description: Advises that emergency action plans are incomplete.Lists needed additions re Nantahala Power \& Light Co. Information: FILE LIST DOC INFO Source: eLibrary	

Issued By:
Filed Date:
ATLANTA REGIONAL OFFICE

3/2/1982

Example: Linking water information to hydropower facilities

ORNL HydroGIS

Example: Finding Historical Generation for an Existing Hydropower Facility

National Hydropower Asset Assessment Program

GEOSPATIAL TOOLS	Stream Classification Tool
ORNL has created the following tools for users to	HydroGIS Viewer

useful for purposes such as:

- Locating and exploring existing hydropower plants, dams, generators, and asso
- Viewing hydrologic and environmental characteristics in relation to existing an
- Funlarina hudranauar aonorat

ORNL developed interactive chars of annuat and monthly plant-level hydropower generation over time using historicat data from the Energy information Administration (EIA). Selecta state from the drop-down menu or map to drll down to plant-level summaries. Please note: EU
data used for calculating historical trends includes records of hydropower and pumped storage generation and excludes any plants not currentiy online. Charts were excluded for power plants lacking sufficient historical data for calculating statistics fe., containing more than 50\% of ElA records between 2002-2013).
Seleca a Sure: -

National Laboratory

Example: Finding Characteristics of New Streamreach Development Potential

ORNL HydroGIS

Hele contactivs simen out

Federally Listed Fish Species [By Total Listed Fish Species]
ORNL HydroGIS

10-0.9t the
Unit Code
Number of
niso Reaches
Henoust

Hecle contactiss rienout

Example: Data-Driven Analysis of Environmental Mitigation Requirements

New Science - Data-Based Stream Classification for Improved Environmental Assessment

National Hydropower Asset Assessment Program


```
STREAM CLASSIFICATION TOOL
A classification system to characterize and
                Stream Classification Iool
    Histontart Eeneraion
HyaroGis Viewer
```


Objectives:

```
Biophysical settings determine the extent and nature of hydropower development and operations, constraints to development and operations, and associated mitigation requirements. The Stream Classification Tool (SCT) is useful for:
- Improving the efficiency of Environmental Impact Assessment (EIA) and scoping for licensing/relicensing.
- Providing high resolution datasets to foster future water power research,
- Prioritizing conservation measures for different stream types or prioritizing areas for future development,
- Providing a generalized framework to understand the extent and nature of hydropower and associated mitigation measures.
```

ettings of stream environments including
Public Sources

```
To date this project has classified almost 1 million stream reaches of the Eastern
```



```
US into groups of similar hydrology, temperature, and morphological types as well as assessing hydrologic alteration and temperature alteration, These datasets provide a tool that can be used to assess mitigation needs at finer resolutions, prioritize mitigation actions, identify case studies or reference streams for comparison, and fill information gaps. The datasets are available to download by subbasin (4-digit HUO) and view within Google Earth to provide a user-friendly, open-access platform for stakeholder, regulator, and industry use.
```


What is a Stream Classification?

```
It a basic level. stream classifications are an inventory of different types of streams. Classifications help us explore similarities and differences among different types of streams, make inferences regarding stream ecosystem behavior, and communicate the complexities of ecosystem. While classifications aid in understanding fundamental differences among streams, they also have many applied outcomes. such as grouping sites with similar character, stratifying analyses for monitoring and/or experimentation, prioritizing mitigation or aquatic conservation, and generalizing ecological responses to disturbances.
```


How is it useful to Hydropower?

```
The SCT is useful to environmental mitigation for hydropower dams in multiple ways. The purpose of the SCT is to create efficiency in the regulatory process by creating an objective and data-rich means to address meaningful mitigation actions. First, the SCT addresses
```


New Science - Data-Based Stream Classification for Improved Environmental Assessment

New Science - Data-Based Stream Classification for Improved Environmental Assessment

New Science - Data-Based Stream Classification for Improved Environmental Assessment

