Data, Tools, and Products to assist in hydropower mitigation

Ryan McManamay

USFS Instream Flow Training

January 10, 2018

ORNL is managed by UT-Battelle for the US Department of Energy

Global Hydropower Expansion

US Hydropower Assets

Near Future of Federal Energy Regulatory Commission (FERC) licensing

- 50% of the FERC hydropower projects with undergo relicensing in the next 15 years
- 70% of the projects will undergo relicensing in the next 20 years
- Doesn't include new licenses

CAK RIDGE

With the looming relicensing storm...

- Need for data, tools, and frameworks to pre-inform stakeholders prior to engagement in FERC licensing process
- Need for early indicators of mitigation needs

Outline

- Steps of FERC licensing
- Present a framework to organize the application of data and tools associated with licensing
- Examples of data, tools and their application
- Brier tour of National Hydropower Asset инаар Assessment Program
 Brier tour of National Hydropower Asset инаар Data and Tools
- Stream Classification Web Application

McManamay et al. 2016. Env Management

FERC Licensing Procedure Types

Licensing Process Description

Traditional Licensing Process (TLP)	Historically, it was the predominant procedure. 3-stage consultation process. Stage 1: NOI, PAD, joint meeting, comments, study proposal disputes. Stage 2: Conduct studies, draft application, stakeholders provide comments/disagreements/resolution. Stage 3: Final application files
Integrated Licensing Process (ILP)	 Default procedure. Implemented in 2003 to create efficiency in process. Same as TLP except: Early issue identification and resolution of studies (fill info gaps), avoiding studies post-filing; Integration of other stakeholder permitting needs; Established time frames to complete process steps for all stakeholders, including the Commission.
Alternative Licensing Process (ALP)	 Designed to improve communication and flexibility. Tailor the pre-filing consultation process to each case; Combine into a single process the pre-filing consultation process and EIS Allow for prep of draft EIS by an applicant or contractor
esentation_name	OAK RIDGE

Major Steps in FERC Licensing Process

FERC Licensing Process

Integrated Licensing Process

Major Steps in FERC Licensing Process

Richter et al. 2006. River Research & Applications Rational Laboratory

Placing Regulations Into a Meaningful Framework

Terminology

- Context: provided at basin or regional scales to characterize the biophysical and operational settings around each hydropower project and provides a point of reference to other regulated rivers and reference streams.
- **Assessment**: conducted at national or regional scales and includes fully describing the current hydrologic and ecologic conditions relative to stakeholder determined ecological and hydrologic objectives.
- Scoping: used to identify key hydrologic and ecological targets, isolate information gaps, and develop flow-ecology relationships to predict the ecological outcomes of alternative flows.
- **Prescription**: Based upon best available knowledge, prescription presents a series of alternative flow scenarios based on objectives and the knowledge gained within the assessment and scoping stages.
- **Feasibility**: analyses that determine the ecological versus economic impacts of alternative flows at the site-specific scale.

Organizing when and where tools are applicable

Context

- Provided at basin or regional scales to characterize the biophysical and operational settings around each hydropower project and provides a point of reference to other regulated rivers and reference streams
- This helps to understand the environmental and political setting, as well as the potential opportunities and constraints to environmental mitigation
- Relevant Data
 - Project Infrastructure, Reservoirs, Attributes
 - Land Ownership
 - Project Economics (Generation)
 - Mode of operation
 - Species occurrences
 - Hydrologic gauges, water temperature stations
 - Stream typologies
 - Environmental mitigation requirements
- Relevant Tools
 - Stream Classification Web Application
 - Hydropower Project and Water Resource Mapper
 - Historical Generation
 - River Function Framework

Context

Assessment

- National or regional scales and includes fully describing the current hydrologic and ecologic conditions relative to stakeholder objectives.
- What is the limiting factor(s) in this system?
- Relevant Data
 - Hydrologic Gauges
 - Water Temperature Monitoring
 - Substrate monitoring
 - Hydrologic Alteration Assessment
 - Species Occurrences
 - Observations and Pictures
- Relevant Tools
 - Flow-ecology relationships
 - Stream Classification Web Application
 - Tennant Method
 - IHA and RVA
 - 7Q10

Assessment

General findings from the 30,000' view:

- Complete loss of seasonal profile
- Loss of major timing of peak flows
 - Overall loss of flow magnitude, extremely apparent in spring/early summer
- Hells Canyon displays a loss of flow volume and highly modified flow regime and loss of biodiversity and ecosystem services
- Comparison to other sites reveals missing ecologically-relevant flow components

Scoping

- used to identify key hydrologic and ecological targets, isolate information gaps, and develop flow-ecology relationships to predict the ecological outcomes of alternative flows
- What are the knowledge gaps? What studies are needed to fill those gaps?
- Need hard evidence and supporting data
- Relevant Synthesized Data
 - Hydrologic Gauges
 - Water Temperature Monitoring
 - Substrate monitoring
 - Hydrologic Alteration Model
 - Species Occurrences
 - Observations and Pictures
- Relevant Tools
 - Flow-ecology relationships
 - Stream Classification Web Application
 - River Function Framework Checklist

Prescription

- Based upon best available knowledge, prescription presents a series of alternative flow scenarios based on objectives and the knowledge gained within the assessment and scoping stages
- Relevant Field Data
 - Field observations
 - Cross-sectional profiles
 - Biological surveys
 - Stage/height information
 - Bedload
 - Substrate assessment
- Relevant Tools
 - IFIM (e.g., PHABSIM)
 - Reservoir Operation
 - Floodplain Inundation
 - HECRAS
 - Flushing Flows
 - Flow-ecology relationships

 Table 1 Examples of alternative flow scenario components to be tested during feasibility studies for stream reaches below hydropower facilities. Alternative scenarios can represent one to many different
 flows within each component and/or one to many different combinations of components

Flow scenario component	Description	Potential ecological/societal benefit
Baseflow		
Minimum flow	Constant baseflow supplied year-round between generation	Entire channel perimeter remains inundated and reduces fish stranding following generation. Creates more stable environment
Seasonally variable baseflow	Baseflow magnitude varies according to season	Seasonally fluctuating flow provides enhanced flows during different spawning times for fish and habitat refugia to support varying life stages of macroinvertebrates and riparian vegetation
Flood pulses		
Frequent small flood (rafting release)	Scheduled releases of small flood events periodically during year (5–10 times) during appropriate seasons	Provides channel maintenance such as scouring or flushing sediment, inundating roots, removing encroaching vegetation, and redistributing spawning substrates. Also could provide recreational boating opportunities
Annual large flood (floodplain pulse)	Scheduled large flood event (per 1.5 years)	Creates new habitats by shifting large amounts of substrates, provides organic matter inputs from floodplain, inundates backwater habitats, and provides nursery habitats for fish
Special-events		
Attractant flow	Pulsed flows attract upstream migrating fish to ladders	Enhances fish passage, reproduction, and population viability
Passage flow	Pulsed flows to enhance/protect outmigration	Enhances fish survival, recruitment, and population viability
Subdaily		
Ramping restriction	Restrictions in the rate of change of the rising limb of generation pulse	Creates less disturbance by reducing square-shaped hydrograph. Allows time for behavioral responses to initiation of peak generation
Down-ramping restriction	Restrictions in the rate of change of the falling limb of generation pulse	Prevents fish stranding by providing time for behavioral responses to flow recession
Daily range restriction	Restrictions in range of min/max flows during day	Reduces disturbance and creates more stable environment to enhance feeding and spawning habitats
Diurnal variation in generation	Shifting the timing of generation within a day	Generating during different times of the day may provide more temporal overlapp of hydrologic stability and peak feeding times

Prescription

- Currently, there is 600 different hydrologic statistics that can be calculated (USGS)
- Need to prioritize components of the flow regime to focus mitigation efforts
- Use a decision-tree approach

Feasibility

- analyses that determine the ecological versus economic impacts of alternative flows at the site-specific scale
- Relevant Data
 - Project Generation
 - Project infrastructure
 - Synthesized Field Data
 - Observations and Pictures
- Relevant Tools
 - IFIM (e.g., PHABSIM)
 - Reservoir Operation
 - Floodplain Inundation
 - HECRAS
 - Flushing Flows
 - Optimization
 - Flow-ecology relationships

Tour of NHAAP Resources

National Hydropower Asset Assessment Program

Home Publications Research & Data > Geospatial Tools > Working With Us Contact Us

The Oak Ridge National Laboratory's (ORNL) National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water, and ecosystem research and geospatial data integration effort for efficient, sustainable, and environmentally friendly hydroelectricity generation and water management. The NHAAP is sponsored by the US Department of Energy Office of Energy Efficiency and Renewable Energy's (EERE) Water Power Program and our partners include state and federal agencies, non-governmental organizations, technology and resource developers, utilities, and researchers.

Project Overview

The overarching goal of the NHAAP effort is to provide the Federal database standard for existing and potential hydropower resource evaluation in the US. By offering the most comprehensive geospatial coverage and unmatched accuracy currently available, the NHAAP effort aims to deliver consistent and reliable information that is critical for stimulating US hydropower market acceleration, deployment, technology-tomarket activities, and environmental impact reduction. Through ongoing development efforts, we aim to increase the quality, functionality, and depth of detail of the NHAAP database and build on our analysis capabilities to enable more effective and efficient support for activities of the US DOE's Water Power Program.

CAK RIDGE

Q

Energy Efficiency & Renewable Energy

Oak Ridge National Laboratory is managed by UT-Battelle for the US Department of Energy

Home | DOE | ORNL | ORNL Water Power Program | Security and Privacy Notice | Web Site Contact

US Stream Classification System

Eastern Stream Classification

US Stream Classification System

Unconfined

Stream Classification

- Identify stream type for hydropower projects, restoration projects, etc
- Identify case studies or reference streams
- Find powerplants or gages on similar stream types
- Assess hydrologic and temperature alteration
- Delineate watersheds

Stream Classification Web Application

Additional Support Slides

Tour of NHAAP Research

The Oak Ridge National Laboratory's (ORNL) National Hydropower Asset Assessment Program (NHAAP) is an integrated energy, water, and ecosystem research and geospatial data integration effort for efficient, sustainable, and environmentally friendly hydroelectricity generation and water management. The NHAAP is sponsored by the US Department of Energy Office of Energy Efficiency and Renewable Energy's (EERE) Water Power Program and our partners include state and federal agencies, non-governmental organizations, technology and resource developers, utilities, and researchers.

Project Overview

The overarching goal of the NHAAP effort is to provide the Federal database standard for existing and potential hydropower resource evaluation in the US. By offering the most comprehensive geospatial coverage and unmatched accuracy currently available, the NHAAP effort aims to deliver consistent and reliable information that is critical for stimulating US hydropower market acceleration, deployment, technology-tomarket activities, and environmental impact reduction. Through ongoing development efforts, we aim to increase the quality, functionality, and depth of detail of the NHAAP database and build on our analysis capabilities to enable more effective and efficient support for activities of the US DOE's Water Power Program.

Energy Efficiency & Renewable Energy

Oak Ridge National Laboratory is managed by UT-Battelle for the US Department of Energy

Home | DOE | ORNL | ORNL Water Power Program | Security and Privacy Notice | Web Site Contact

NHAAP Public Portal http://nhaap.ornl.gov/

NHAAP Research & Data

http://nhaap.ornl.gov/content/nhaap-research

Description

Cartographe

distribution of runnoff by 8-digit hydrologic unit code spatial accounting units; major US river systems

Nicole Same

NHAAP Geospatial Tools

http://nhaap.ornl.gov/NHAAP-GIS-Data-and-Mapsal Laboratory

Example: Public Access via HydroGIS

31 Presentation name

National Laboratory

Example: Finding Context for an Exi

× / eLibrary - Docket Sheet

https://hydro.ornl.gov/cgi-bin/ferc/docket.php?id=P-2698

× \ +

ORNL HydroGIS

Example: Linking water information to hydropower facilities

HydroGIS

33

Example: Finding Historical Generation for an Existing Hydropower Facility

Example: Finding Characteristics of New Streamreach Development Potential **HydroGIS**

Presentation name

Example: Data-Driven Analysis of Environmental Mitigation Requirements

[Citation] Bevelhimer, M.S., M.P. Schramm, C.R. DeRolph (2015), Non-Federal Hydropower Mitigation Database, Oak Ridge National

OAK RIDGE National Laboratory

New Science – Data-Based Stream Classification for Improved Environmental Assessment

New Science – Data-Based Stream Classification for Improved Environmental Assessment

New Science – Data-Based Stream Classification for Improved Environmental Assessment

Stream Classification Tool

(0)

â

+

Sign in

National Laboratory

Google earth

earth

GE

New Science – Data-Based Stream Classification for Improved Environmental Assessment Stream

