Bayesian probability modeling

James T. Pełerson
USGS Oregon Cooperalive Fish and Wildlife Research Unit Homepage: http://people.oregonstate.edu/~peterjam/

First, some definitions...

Certainty: An event is considered certain if it is 100% likely to happen

Uncertainty: Anything that falls short of absolute certainty

Uncertainty generally incorporated into natural resource decision modeling using probability

Common forms of uncertainty in natural resources management decision making

Linguistic

Episłemic
Statistical uncertainty Observational error Structural uncertainty

Aleatory
Environmental variability
Reducible

Demographic variability

Often overlooked source of uncertainty

Structural (System) uncertainty

due to incomplete understanding of system dynamics

Incorporated into decision modeling using multiple models and model probabilities (weights)

Bayesian inference

Bayesian example

Imprecise prior
Precise prior

Influence of prior and sample data on posterior

Precision

Prior \S, data $凸$, posterior \rightarrow prior
Prior $凸$, data $\}$ posterior \rightarrow sample

Sample size

> samples, greater influence

Where do we get priors?

Meta analysis

 previous studies published reports
Expert elicitation

Diffuse (non-informative)

Commonly used fools

Monte Carlo Markov Chain (MCMC)
 Integrate multiple data types, sources, and models
 Natural fit

Probabilistic networks

Bayesian belief networks Influence diagrams

Example: Southeast resource assessment

Evaluation of potential climate change effects stream flows temperature

All habitat and fish population data from southern portion of ACF basin

Very sparse data available for adjacent basins in Blue Ridge

Iask: develop models for response of cool water biota

Apalachicola, Chattahoochee, Flint Basin

Existing models of flow-fish relation (the prior)

Traił based

Flow variability during spawning and rearing

Existing models of flow-fish relations (the posterior)

So.. how is this useful for water resource decision-making?

Assuming that we have
Objectives Decision alternatives

Modeling decisions

Existing models/components

Meta-analysis
"Expert" judgment
Data(?)

Common question:
 Won't the priors affect the model estimates and decision making?

Maybe/probably/yes , but

Sensitivity analysis

Identify key uncertainties sensitivity analysis

Identify the uncertainties affect decisions What would we do dififerently if we knew X?

Prioritize research and monitoring

Focus on decision-making What do we need to know?
How much is enough?

Example: Wafer availabilify for ecological needs in the ACF Basin

Spatially explicit

Stream segment
Flow, habitat, fish metapopulation models (43 species)

Statistical uncertainty

flow and habifat model errors

Structural (system) uncertainty

Alternative fish population demographics models

What assumptions/inputs affecł the decision?

Reducing Uncertainty

New studies / Experiments

Adaptive management (monitoring)

Reducing uncertainty

Often want to know... What will it gain?
How much is needed? How much is enough?

Value of information

Expected value of decision if no uncertainty
Model parameters
Model inputs and system state
Currency that is valued by the decision-makers
Fish population size
Water available for use
Others

Value of perfect information

Example: Alternative extinction hypotheses

Assume constraint: species loss < 5\%

System dynamics	Daily water withdrawal (MGD)
Chronic flows	3.50
Acute low flows	1.37
Weighted average	2.44

Composite estimate

 1.83 MGDValue of perfect information: 2.44-1.83 = 0.61 MGD

Value of information

But... not all information is perfect (it almost never is)

Some sources of imperfection
Sampling error
Incomplete understanding of process
Random error
Others???

Value of imperfect information

Value of sample information

Multi-species occupancy simulations
2 sample occasions, error (CV) ~ 35\%
True richness, given estimated 25: 25 +/- 4
Value of sample information: 0.26 MGD
4 sample occasions, error (CV) ~ 10\%
True richness, given estimated 25: 25+/-2
Value of sample information: 0.49 MGD

Compare to EVPI = 0.61

Reducing uncertainty: monitoring

Spring and summer 2011-2012 (2013) 21 sites, 40-100 m

Electrofishing and seining

Occupancy 2-3 visits season
Flint River Basin

Update model probabilities

Peterson and Freeman

Updated estimates of water use effects

Summary

Bayesian approaches
Underutilized
Cost/effort savings
Leverage existing information
Propagate uncertainty
Learning through time/space (reduce uncertainty)

Natural fit with decision modeling

Identify important uncertainties
Value of (im)perfect information

