The San Juan River Population Model: linking ecosystem components, management actions, and fish numbers to address uncertainty in new ways

April 30, 2015

William J. Miller
Miller Ecological Consultants, Inc

Acknowledgements for support and model data

, Vince Lamarra and Ecosystem Research Institute
, Southern Ute Indian Tribe
, San Juan Recovery Program Office
, US FWS Region 2 and Region 6
UNMGF

- UDWR
- ASIR
- UNM
- Other SJRIP participants

Why an Ecosystem/population model?

Uses a systems approach to endangered species recovery
One method to address uncertainty associated with management actions for recovery of long lived endangered species
Integrates data and expert opinion into a single explicit framework

- Integrates physical and biological data in one model
- Provides a means to simulate multiple management scenarios in a relatively short time frame.

Model Background and Objectives

O Needed a method to estimate populations for long lived endangered species in response to management actions

OManagement actions include flow manipulation, habitat modification, non-native removal and augmenting populations

- Develop carry capacity estimates for endangered fishes (To determine and validate recovery goals)
- Incorporate bioenergetics to represent food web dynamics and trophic interactions
- Provide a tool to critically evaluate management alternatives and population response over long time periods

Study Area

San Juan Population Model Development Chronology

1998 Conceptual model
1998 - 2001 Population/productivity data collection
1999-2001 Development of Mechanistic and Bioenergetic models
2000 Bioenergetic model used to calculate SJR recovery goals for Colorado pikeminnow

- 2001 - 2005 model calibration, testing, maintenance and initial evaluation of management actions
- Recommended for use in the San Juan Recovery Program when updated to newer model software
- 2012-2014- conversion from Stella 8 to Stella 9

Conceptual Framework

Physical Factors
Bioenergetics
Fish Populations

Physical Factors

Habitat Area

- Riffle and Run used for benthic invertebrate productivity Discharge
- Habitat area

Water Temperature

- Growth Rates
- Turbidity/Storm Events
- Benthic production reset

Bioenergetic trophic structure and data needs

- Producers
- Consumers
, Vallidated with stable isotope analysis
- Energetic demands for each species

Conceptual Model Development and Parameter Characterization

Fish population data

Needed for bioenergetic feedback Number per mile
Length-Weight relationships
Total biomass

- Prey availability
- Fecundity
- Survival rates

Model Components

Fish

Colorado plkeminnow RRazorback Sucker JBluehead sucker戸可nselmouth sucker ospeckled Dace Cfiansel Catifish Common Carp jRed Shiner pathead minnow

Macroinvertebrates

Chjronomids
 Stmulids
 Hydropsychids
 Baetids, Ephemerellids

Physical

Discharge Water Temp Storm Events Habitat

Bioenergetic sub model

Computational Platform for Mechanistic Model

- StJELA modeling software
- Combines graphical interface with mechanistic relationships

0 MS Excel used for dynamic data link to exchange input/output data

Example of individual life stage population flow

Adult Catostomus discobolus

San Juan River Fish/Invertebrate Simulation

Exit

See Outputs for Specific Reaches

See Outputs Summed Across All Reaches

Import Data from Excel

Model Configuration

- Weekly time step- capable of 100 year simulation
- Sub model for bioenergetics
- Individual based model for population parameters expanded to total population
- Biomass used for prey consumption, availability and growth
- Growth feedback loop for fish and macroinvertebrates from prey density and consumption
-Dynamic upstream and downstream movement for all species and life stages

Stell.la 9 modeJ linkages - function

Stella 9 updates - module function

Stella 9 updates - function

ModeJ Calibration

JIterative process of multiple model runs
JInitial conditions from 2002 data set
JAdjusted the following to match SJR monitoring data from 2002 to 2013:

- Mortality rates
- Hatching success
- Downstream and upstream migration
- Input yearly values for augmentation and mechanical removal.

Comparison to UDWR data

Model Validation

Inifital conditions 2002 data
, Callibrated model parameters
, Compared to population estimates from UDWR, Franssen et al. and mechanical removal

- Iterative runs to fine tune to population estimates

Comparison of model to monitoring data set

Validation against channel catfish population estimates

Channel Catfish Population Estimates

Stell.a Model Preliminary Management Scenarios

د Mechanical removal - hypothesis that nonnatives limited endangered species
A Augmentation - How many and what age? Used to evaluate the long term population resulting from stocking

- River reaches allow testing of longitudinal connectivity

Colorado pikeminnow

Mechanical removal

Adult Channel Catfish

Colorado pikeminnow recruitment -no stocking, no return from Lake Powell

Colorado pikeminnow recruitment -no stocking, with return from Lake Powell

Lessons Learned

- Selection of existing software packages may limit model flexibility
- Data intensive
, Requires multiple year data sets to reduce model uncertainty
, Model can be used as a tool to assist in evaluation of management actions
L-Lower confidence in input data or inter-relationships increases the uncertainty of accuracy of the long term population projections.

Lessons Learned

, Refined input data sets for fish populations would provide higher conficdence in model output

- Data needs/model limitations:
- Large complex systems with endangered species require cooperation from multiple groups for data collection
- River-wide population estimates
- Data for retention of larvae by reach
- Data for juvenile and adult movement
- Population numbers as a function of habitat for key life stages

