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Background:
• Physical habitat models (e.g., PHABSIM, SEFA) use

cross-section geometry, stage-discharge data,
water velocity profiles, and species-specific
habitat suitability criteria to characterize the
amount of aquatic habitat that occurs at different
flows.

• Acoustic Doppler Current Profilers (ADCP) can
quickly collect a high density of hydraulic data that
can be synthesized into inputs for physical habitat
models (Figure 1).

• However, raw data from ADCPs require substantial
processing before they can be reduced to the
relatively simple inputs used in the models.

• Data reduction occurs at many steps along the
way and can feel like a “black box” where the user
is not always aware of the error/uncertainty of the
final metrics

• The objective of this study was to perform a
sensitivity analysis to quantify the uncertainty of
Area Weighted Suitability (AWS) due to variance in
ADCP data and the manner in which it is post-
processed. Calculations were made using the
System for Environmental Flow Analyses (SEFA)
model.

• Other sources of uncertainty have been explored
by others, including: error from the selection of
cross-sections (6,7,8), ADCP measurement error
(3,4,5,9), and error associated with habitat
suitability curves (1,2). These sources were not
addressed by this study.

Methods:
• Hydraulic data were collected on the Suwannee River in

north-central Florida (Figure 2) for a project to recommend
Minimum Flows and Levels and manage water resources.
One cross-section was selected as an example for this
study (Figure 3).

• ADCP data were post-processed to average the depth and
velocity measurements over 5-ft increments along the
cross-section.

• The standard deviations of depth and velocity at each
increment, and total discharge for the site were calculated.

• Random values for total discharge, increment depth, and
increment velocity were generated from a normal
distribution centered on the mean and with variance based
on the observed standard deviations.

• A SEFA import file was created for the cross-section using
the random values; this was repeated to create 100
iterations of the same transect, all slightly different.

• Generic suitability curves for four habitat guilds
(shallow/slow, shallow/fast, deep/slow, deep/fast) (Figure
4) were applied to calculate Area Weighted Suitability
(AWS) curves for each iteration.

• The AWS results were plotted along with 60- and 90-
percent confidence intervals to illustrate the sensitivity of
outputs and understand the uncertainty of AWS due to the
necessary post-processing of ADCP data.

Abstract:
Uncertainty of river habitat models (e.g., PHABSIM, SEFA) can stem from multiple sources,
including: the placement of cross-sections; habitat suitability criteria applied; and the
calibration of the underlying hydraulic model.  In this study, I focused on the latter, and tested
the sensitivity of model outputs – namely, Area Weighted Suitability (AWS) – to the variability
observed in hydraulic input data that were measured by a boat-mounted acoustic Doppler
current profiler (ADCP).  Data from an example cross-section of the Suwannee River, Florida,
were post-processed into a SEFA import file by calculating the average and standard deviation
of depths and velocities in 5-ft increments along the cross-section. One hundred iterations of
the cross-section were then generated by selecting each of the ADCP-measured parameters
(i.e., depths, velocities and total discharge) randomly from its observed distribution. Suitability
criteria for four basic habitat guilds were used to calculate AWS across a range of flows, and the
results were summarized by plotting the curve formed by the averages along with 60- and 90-
percent confidence intervals.  In general, the shape of AWS curves was consistent, with some
exceptions depending on guild and flow range.  Ninety percent confidence intervals on AWS
values were typically spread ± 50-100% from the mean and the optimal flow range identified by
individual curves was the same as the optimum flow of the mean curve 61-92% of the time.
Understanding the influence of different data sources on model results is important for water
resource managers as they craft regulations and make policy decisions.
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Results:
• Predicted physical habitat conditions (average

depth and velocity) were fairly robust to
variability in hydraulic inputs (Figure 5).

• Depending on the species/guild, AWS curves can
exhibit a moderate degree of “noise” around the
amount of habitat available (y-axis) and the flow
at which AWS is maximized (x-axis) (Figure 6).

• The 90-percent confidence intervals cover a
range of AWS values that are typically ± 0.5 to 1.0
times the mean, and in extreme cases might be
as high as ± 1.5 times the mean.

• The optimal flow (flow at which the maximum
AWS occurred) identified by individual curves
was the same as the mean curve between 61 and
92 percent of the time depending on guild
(Figure 7).

Conclusions:
• The observed range of error in hydraulic

measurements made with an ADCP is
sufficient to obscure the results of river
habitat models.

• AWS appears to be equally as sensitive to
hydraulic input error as it is to other factors
described in the literature, such as transect
selection and habitat suitability criteria
(1,7,8); but sensitivity is variable between
species/guilds.

• Next steps should include comparing the
relative amount of uncertainty to traditional
data collection methods, and to other
sources within the model.
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Figure 1. Screenshots from WINRIVER II,
illustrating the high density of hydraulic data
captured by an ADCP

Figure 2. Photos of the Suwannee River, Florida,
where example data was collected: A) bathymetry of
study site; B) groundwater springs; C) boat-mounted
ADCP; D) limestone banks; E) fine sand banks.

Figure 3. The shoal-type cross-section and velocity
profile used for this study. Bank geometry (above
waterline) was surveyed with a total station; bed
elevations/depths were measured with ADCP and
converted to NAVD. Mean water column velocities
were measured with ADCP, then averaged over 5-
ft intervals along the cross-section.

Figure 4. Depth and velocity suitability curves for four general
habitat guilds.  Substrate and cover were ignored for this study.

Figure 6. Area Weighted
Suitability curves of the four
guilds, based on the mean,
minimum, maximum, 60% and
90% confidence intervals for
AWS at each flow.

Figure 5. Average depth and velocity of the 100
individual cross-sections at different flows.

Figure 7. Frequency at which a flow increment was identified
as providing the optimal amount of habitat over the 100
randomized iterations of the cross-section.
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